Studies on Heterocyclic Chemistry. Part XII. ${ }^{1}$ Tautomerism of α-(5-Oxo-Δ^{3}-isoxazolin-4-yl)benzylphosphonates

By Tarozaemon Nishiwaki * and Koichi Kondo, Department of Chemistry, Yamaguchi University, Yamaguchi City 753, Japan
α-(5-Oxo- Δ^{3}-isoxazolin-4-yl) benzylphosphonates (2) mostly exist in the NH form in the solid state, and in the OH form in non-polar solvents, owing to chelation with the phosphonyl group. The tautomeric equilibrium in solution is influenced by the nature of the 3 -substituent in the isoxazole ring; the 3-methyl compounds exist partially in the NH form. A modified synthesis of these compounds is described.

During our studies on thermal reactions of isoxazole derivatives, ${ }^{2}$ we prepared a number of α-(5-oxo- Δ^{3} -isoxazolin-4-yl)benzylphosphonates (2) and have studied their tautomeric equilibria. Katritzky et al. ${ }^{3}$ have shown that 3 -substituted Δ^{2}-isoxazolin- 5 -ones exist predominantly in the $\mathrm{C}(4) \mathrm{H}$ form in solvents with low

[^0]dielectric constant and in the solid state, whereas in 3,4 -disubstituted Δ^{2}-isoxazolin-5-ones the NH form is considerably more favoured. Δ^{2}-Isoxazolin-5-ones with a carbonyl function at C-4 are, however, exceptional in that they exist as the OH form, owing to chelation with the carbonyl group. ${ }^{3,4}$ As a phosphonyl group
${ }^{3}$ A. J. Boulton and A. R. Katritzky, Tetrahedron, 1961, 12, 41; A. R. Katritzky, S. Øksne, and A. J. Boulton, ibid., 1962, 18, 777.
${ }_{4}$ S. V. Sokolov and I. Ya. Postovskii, Zhur. obshchei Khim., 1960, 30, 600 .
is a strong hydrogen acceptor, ${ }^{5}$ this group, if present either directly attached to or separated by one carbon atom from the ring, could seriously influence the tautomeric equilibrium of Δ^{2}-isoxazolin-5-ones. Though our conclusions of the tautomerism of compounds (2) broadly parallel those of Katritzky ${ }^{3}$ on alkyl 5 -oxo-Δ^{2}-isoxazoline-4-carboxylates, an additional interesting feature has emerged.

By a modification (see Experimental section) of Arbuzov's procedure, ${ }^{6}$ a number of dimethyl α-(5-oxo-Δ^{3}-isoxazolin-4-yl)benzylphosphonates (2) with 3 -methyl, 3 -aryl, or 3 -(2-thienyl) substituents have been prepared
reactions of 5 -benzylidene-2-thioxothiazolidin-4-one derivatives. ${ }^{7}$

The isoxazolinones (2) exist in the NH form in the solid state; their i.r. spectra (Nujol mulls) show an intense carbonyl absorption characteristic of Δ^{3}-isoxaz-olin-5-ones at $1725-1700 \mathrm{~cm}^{-1}$ for the 3 -methyl compounds and at $1740-1720 \mathrm{~cm}^{-1}$ for the 3 -aryl and 3 -(2-thienyl) compounds (see Table). However, in chloroform, the 3 -aryl and 3 -(2-thienyl) compounds displayed two absorptions, at $1810-1800(\varepsilon<20)$ and $1735-$ $1730 \mathrm{~cm}^{-1}(\varepsilon<30)$. It is known that Δ^{2} - and Δ^{3} -isoxazolin-5-ones show intense carbonyl absorption at ca. 1800 and $1720 \mathrm{~cm}^{-1}$ respectively; ${ }^{3}$ a decrease in these two absorptions for 3 -aryl- or 3 -(2-thienyl)substituted isoxazolinones (2) indicates that they exist mostly as the 5 -hydroxyisoxazole form (3) in chloroform, owing to chelation with the phosphonyl group. When ethanol was added to the chloroform solutions of compounds (2; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) and (2; $\mathrm{R}^{1}=2$-thienyl, $\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$), an intense carbonyl absorption due to the Δ^{3}-isoxazolin-5-one system was observed at $1720 \mathrm{~cm}^{-1}$. Intramolecular association of the phosphonyl group is destroyed, and consequently the compound (2) will have to exist either as the NH or CH form in polar solvents: spectral evidence rules out the presence of the CH form. How-

Dimethyl α-(5-oxo- Δ^{3}-isoxazolin-4-yl)benzylphosphonates (2) ${ }^{a}$

R^{1}	R^{2}	R^{3}	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\mathrm{M} .}$	Yield (\%)	Crystal form	Analyses							$\begin{aligned} & \nu_{\text {max }} / \mathrm{cm}^{-1} \\ & (\mathrm{C}=\mathrm{O})^{e} \end{aligned}$	$\underset{\operatorname{mm}(\log \varepsilon)}{\lambda_{4}}$
						Found (\%)			Formula	Required (\%)				
						C	H	N		C	H	N		
Ph	H	H	156-158	95	Prisms	$60 \cdot 4$	$4 \cdot 9$	$3 \cdot 8$	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{P}$	$60 \cdot 2$	$5 \cdot 05$	3.9	1725	278 (4.08)
Ph	H	Me	142-143	86	Needles	$61 \cdot 3$	$5 \cdot 3$	3.5	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{P}$	$61 \cdot 1$	$5 \cdot 4$	$3 \cdot 75$	1740	279 (3.98)
Ph	Cl	H	140-141	66	Plates	54.9	$4 \cdot 5$	3.5	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}_{5} \mathrm{P}$	$54 \cdot 9$	$4 \cdot 35$	$3 \cdot 6$	1735	$\begin{aligned} & 224(4 \cdot 27), \\ & 278(3 \cdot 89) \end{aligned}$
Ph	OMe	H	149-150	92	Rods	58.5	$5 \cdot 0$	$3 \cdot 4$	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{P}$	$58 \cdot 6$	$5 \cdot 2$	$3 \cdot 6$	1730	$\begin{aligned} & 220(4 \cdot 16), \\ & 275(3 \cdot 88), \end{aligned}$
														281 (3.89)
2-Thienyl	H	H	156-157	57	Plates	52.8	$4 \cdot 5$	3.6	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{PS}$	$52 \cdot 6$	4.4	3.8	1720	265 (4.01)
$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	H	H	191-192	92	Prisms	58.4	$5 \cdot 4$	3.4	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{P}$	58.6	$5 \cdot 2$	$3 \cdot 6$	1728	276 (4.16)
$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	H	Me	220-221 ${ }^{\text {b }}$	91	Plates	59.6	$5 \cdot 7$	$3 \cdot 2$	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}$	59.55	5.5	3.5	1725	273 (4.19)
${ }_{\mathrm{Me}}{ }^{\text {c }}$	H	Me	144-145	70	Rods	53.9	$5 \cdot 85$	$4 \cdot 4$	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{P}$	$54 \cdot 0$	5.8	$4 \cdot 5$	1700	262 (4.01)
Me	H	OMe	149-151	67	Rods	$51 \cdot 4$		$4 \cdot 1$	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{P}$	$51 \cdot 4$	$5 \cdot 5$	$4 \cdot 3$	1705	$\begin{aligned} & 228(4 \cdot 04), \\ & 263(3.96) \end{aligned}$
		Res	of the r	ion	3	quiv	of	me	yl phosphite.	Dec	p.	- Nu	mull.	

in high yield (see Table). The structures assigned are based on microanalyses, evidence for the presence of a tautomerisable hydrogen atom (see later), and mass spectral observations. The abundance of the molecular ion was ca. 30%, and the $\left[M-\mathrm{PO}(\mathrm{OMe})_{2}\right]^{+}$ion was the base peak.* The preparative reaction is probably ionic in character, since it proceeds without the aid of a radical initiator. We also studied the reaction of the compound (1) with other dialkyl phosphites, but could not obtain any crystalline material, in contrast to the

[^1]ever, formation of a hydrogen bond with the π-electrons of benzene ring could also be responsible for the stability of the 5 -hydroxyisoxazole form. As such a bond is generally weak, ${ }^{8}$ it ought to have little if any effect on the tautomeric equilibrium of compound (2). The i.r. spectra of the compounds (2) in chloroform also showed broad absorption at $c a .2500 \mathrm{~cm}^{-1}$, indicative of the presence of a hydroxy-group strongly associated with an acceptor [the effect of intramolecular association upon the $\nu(\mathrm{P}=\mathrm{O})$ band could not be ascertained because

[^2]of possible overlap of a band due to associated $\mathrm{P}-\mathrm{O}$ band with $\mathrm{Me}-\mathrm{O}-\mathrm{P}$ absorption ${ }^{9}$].

These views are further supported by the u.v. spectra; the isoxazolinone ($2 ; \quad \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}, \quad \mathrm{R}^{3}=\mathrm{Me}$) had $\lambda_{\text {max. }}$ (EtOH) $279 \mathrm{~nm}(\log \varepsilon 3.98)$, but showed only end absorption in the region $>250 \mathrm{~nm}$ in chloroform or dioxan. For comparison, the N-methyl derivative (4) and the O-methyl derivative (5) of compound (2 ; $\mathrm{R}^{1}=\mathrm{Ph}, \quad \mathrm{R}^{2}=\mathrm{H}, \quad \mathrm{R}^{3}=\mathrm{Me}$) were prepared; the former was obtained in high yield by reaction of 3 -phenyl-4- p-methylbenzylidene- Δ^{2}-isoxazolin-5-one (1 ; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}$) with trimethyl phosphite in ether. Its u.v. spectrum (in ethanol) resembled that of compound (4) [$\lambda_{\text {max. }}$. $\left.(\mathrm{EtOH}) 281 \mathrm{~nm}(\log \varepsilon 3.72)\right]$, but differed from that of compound (5) [$\lambda_{\text {max. }}$ (EtOH) $221 \mathrm{~nm}(\log \varepsilon 4.35)]$. Thus the isoxazolinones (2) exist mostly as the NH form in ethanol.

(4)

(5)

Arbuzov et al. ${ }^{6}$ have shown that dimethyl α-(3-methyl5 -oxo- Δ^{3}-isoxazolin-4-yl)benzylphosphonate $\quad\left(2 ; \quad \mathrm{R}^{1}=\right.$ Me, $\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$) in chloroform has a carbonyl absorption of medium intensity at $1708 \mathrm{~cm}^{-1}$, indicating that it exists partially in the NH form. This view is further supported by the i.r. spectra of compounds (2; $\left.\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}\right),\left(2 ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}\right.$, $\mathrm{R}^{3}=\mathrm{Me}$), and (2; $\left.\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OMe}\right)$, which showed medium-intensity absorption at 1713 cm^{-1} in chloroform ($\varepsilon 80-100$) but no band at 1800 cm^{-1} [cf. ε of dimethyl 2,3 -dimethyl-5-oxo- Δ^{3}-isoxazolin4 -yl)benzylphosphonate, 490].

It is concluded that, in a non-polar solvent, α-(5-oxo-Δ^{3}-isoxazolin-4-yl)benzylphosphonates (2) with 3 -aryl or a 3 -(2-thienyl) substituent exist mostly in the OH form, whereas in a non-polar solvent compounds (2) with a 3-methyl group exist as a mixture of the NH and OH forms. The tautomeric equilibrium of Δ^{2}-isoxazolin5 -ones thus depends on the nature of the 3 -substituent; an adequate explanation for this cannot be offered at present.

EXPERIMENTAL

Light petroleum refers to the fraction of b.p. $100-120^{\circ}$ unless otherwise stated.
${ }^{9}$ L. C. Thomas and R. A. Chittenden, Spectrochim. Acta, 1964, 20, 489.

Reaction of 4-Arylidene- Δ^{2}-isoxazolin-5-ones (1) with Dimethyl Phosphite.-Typically the compound (1) (0.01 mol) and dimethyl phosphite (0.02 or 0.03 mol) were heated in toluene (10 ml) under reflux for $0.5-1 \mathrm{~h}$. The mixture was cooled and light petroleum (10 ml) was added. The precipitates were filtered off, washed with ether, and recrystallised from benzene-light petroleum (see Table).

5-Amino-3-(2-thienyl) isoxazole.-This compound was prepared (63%) from (2-thenoyl)acetonitrile [prepared in 35% yield, as described for p-chlorobenzoylacetonitrile; ${ }^{2} \mathrm{~m} . \mathrm{p}$. 134-135 (from benzene-hexane) (Found: C, 55.7; $\mathrm{H}, \mathbf{3 \cdot 4}$. $\quad \mathrm{C}_{7} \mathrm{H}_{5}$ NOS requires $\mathrm{C}, 55 \cdot 6 ; \mathrm{H}, \mathbf{3 \cdot 3} \%$)] and hydroxylamine according to the method of Obrègia; ${ }^{10} \mathrm{~m} . \mathrm{p} .96-97^{\circ}$ (from carbon tetrachloride) (Found: C, $50.4 ; \mathrm{H}, 3.75$; $\mathrm{N}, 16 \cdot 65 . \quad \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 50 \cdot 6 ; \mathrm{H}, 3 \cdot 6 ; \mathrm{N}, 16.9 \%$). 3-(2-Thienyl)- Δ^{2}-isoxazolin-5-one.-5-Amino-3-(2-thienyl)isoxazole (2.50 g), methanol (15 ml), and 6 N -sulphuric acid (15 ml) were heated under reflux for 30 min . On concentration of the solution, a solid was obtained which afforded needles ($1.29 \mathrm{~g}, 53 \%$), m.p. $136-138^{\circ}$ (decomp.) (from water) (Found: C, $50 \cdot 4 ; \mathrm{H}, 2 \cdot 9 . \quad \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $50.3 ; \mathrm{H}, 3.0 \%$).

4-Arylidene- Δ^{2}-isoxazolin-5-ones (1). -The following Δ^{2} -isoxazolin-5-ones were prepared as described in ref. 11; 4-benzylidene-3-(2-thienyl)- ($1 ; \mathrm{R}^{1}=2$-thienyl, $\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$), m.p. 132-133 (from methanol) (Found: C, 65•6; H, 3.8. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 65.9 ; \mathrm{H}, 3.55 \%$); 4-benzylidene3 -p-methoxyphenyl ($\mathrm{l} ; \mathrm{R}^{1}=p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$), m.p. 169-171 ${ }^{\circ}$ (from ethanol) (Found: C, 73.3; H, 4.65. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73 \cdot 1 ; \mathrm{H}, 4.7 \%$; 3-p-methoxyphenyl-4-p-methylbenzylidene $\quad\left(1 ; \quad \mathrm{R}^{1}=p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, \quad \mathrm{R}^{2}=\mathrm{H}\right.$, $\mathrm{R}^{3}=\mathrm{Me}$), m.p. 141-142 (from ethanol) (Found: C, $73 \cdot 7 ; \mathrm{H}, 5 \cdot 4 . \quad \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73 \cdot 7 ; \mathrm{H}, 5 \cdot 15 \%$); and 4-(o-methoxybenzylidene)-3-phenyl- $\left(1 ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}\right.$ $=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{H}$), m.p. $166-167^{\circ}$ (from ethanol) (Found: $\mathrm{C}, 72 \cdot 8 ; \mathrm{H}, 4 \cdot 45 . \quad \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73 \cdot 1 ; \mathrm{H}, 4 \cdot 7 \%$).

Dimethyl $\quad \alpha$-(2-Methyl-5-oxo-3-phenyl- Δ^{3}-isoxazolin-4-yl)-p-methylbenzylphosphonate (4).-The compound (1; R^{1} $\left.=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}\right)(2.6 \mathrm{~g}, 0.01 \mathrm{~mol})$, trimethyl phosphite ($1.5 \mathrm{~g}, 0.012 \mathrm{~mol}$), and ether (20 ml) were heated under reflux for 1.5 h . The resulting solid ($2.7 \mathrm{~g} ; 71 \%$) crystallised from ether-light petroleum (b.p. 30-70 ${ }^{\circ}$) as plates, m.p. $105-107^{\circ}$ (Found: C, $62 \cdot 3 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 3 \cdot 6$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 62 \cdot 0 ; \mathrm{H}, 5 \cdot 7 ; \mathrm{N}, 3 \cdot 6 \%$), $\nu_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 1735 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Dimethyl $\quad \alpha$-(5-methoxy-3-phenylisoxazol-4-yl)-p-methylbenzylphosphonate (5). -The compound (2; $\mathrm{R}^{1}=\mathrm{Ph}$, $\left.\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}\right)(\mathrm{l} .72 \mathrm{~g})$ was treated with diazomethane in ether and the product ($1.49 \mathrm{~g}, 84 \%$) crystallised from light petroleum as plates, m.p. 122° (Found: C, 62.0; $\mathrm{H}, 5.7$; N, 3.5. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 62 \cdot 0 ; \mathrm{H}, 5 \cdot 7$; N, $3 \cdot 6 \%$).
[1/1218 Received, July 15th, 1971]
10 A. Obrègia, Annalen, 1891, 266, 324.
${ }^{11}$ T. Nishiwaki, Tetrahedron, 1969, 25, 747.

[^0]: ${ }_{1}^{1}$ Part XI, T. Nishiwaki and S. Onomura, J. Chem. Soc. (C), 1971, 3026.
 ${ }_{2}$ See Part X, T. Nishiwaki and T. Saito, J. Chem. Soc. (C), 1971, 3021, and references therein.

[^1]: * Major mass spectral fragmentation of the compounds (2) starts from the OH form. This will be dealt with elsewhere.
 ${ }^{5}$ E. Halpern, J. Bouck, H. Finegold, and J. Goldenson, J. Amer. Chem. Soc., 1955, '77, 4472; T. Gramstad and H. J. Storesund, Spectrochim. Acta, 1970, 26 A, 426.

[^2]: ${ }^{6}$ B. A. Arbuzov, E. N. Dianova, V. S. Vinogradova, and Yu. Yu. Samitov, Doklady Akad. Nauk S.S.S.R., 1967, 173, 1321.

 7 B. A. Arbuzov, V. M. Zoroastrova, and N. D. Ibragimova, Izvest. Akad. Nauk S.S.S.R., Ser. khim., 1967, 1972.
 ${ }^{8}$ M. Tichy, Adv. Ovg. Chem., 1965, 5, 115.

